
www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks  
are the property of their respective owners. (0120AD21)

Introduction

Branching and merging are how code changes get coordinated in a version control 

system. Development teams working on the same branch need to coordinate efforts to 

avoid duplication and overriding other team members’ changes.

Developers should merge their code changes early and often to ensure the shared 

branch stays up to date. Code can then be integrated frequently for builds and tests, 

leading to increased velocity and higher-quality releases. But as development products 

grow and become more complex, so do the number of branches teams need to manage.

W H I T E  PA P E R

How to Automate Your 
Branching Strategy
Perforce Streams Adoption Guide



WHITE PAPER

How to Automate Your Branching Strategy

www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks  
are the property of their respective owners. (0120AD21)

Contents

Branching and Merging Challenges........................... 3
Relationships Between Branches................................................. 3

Branching Documentation.......................................................... 3

Complicated Scripts.................................................................. 4

Automate With Perforce Streams............................... 4

How to Use Perforce Streams.................................... 5

Component-Based Development.............................. 5
Component-Based Development Challenges................................ 5

Simplify Component-Based Development With Streams................. 5

Development Pipeline/Maturity Model/Shift Left........ 6
Early Testing Challenges............................................................. 6

Shift Left With Streams................................................................ 7

Multiple Teams, Parallel Releases, 

and Multiple Variants............................................... 7

Multiple Teams.......................................................................... 7

Parallel Releases........................................................................ 8

Multiple Variants....................................................................... 9

How to Migrate to Perforce Streams.........................10
Migrating Your Monolith............................................................ 10

Streams Best Practices................................................................11



www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks  
are the property of their respective owners. (0120AD21)

WHITE PAPER

3  |  How to Automate Your Branching Strategy

Parallel development can get complicated at scale. To 

support multiple teams, releases, components and/or 

a large number of users, enterprises need to implement 

development processes. Teams could be divided up 

by programming languages, function (frontend and 

backend), and/or features, for example. The branching 

strategy coordinates how changes are made, promoted, 

tested, and eventually released across teams.

For many, branching, merging, and tagging procedures 

are not automated. If not automated, there are going to 

be challenges. Review this white paper to discover how 

you can automate your branching strategy to help teams 

move fast.

Branching and Merging Challenges

Developers want to spend time innovating, not figuring 

out where to branch and merge. Without automation, 

resources are spent managing:

•	 Relationships Between Branches

•	 Branching Documentation

•	 Complicated Scripts

RELATIONSHIPS BETWEEN BRANCHES

As developers branch to make changes, they are usually 

diverging code from a shared branch. For most version 

control systems, once a branch is created, there is no 

systematically defined relationship to the originating 

branch. Developers need to remember what branch they 

need to merge their changes back into.

But this is tricky at scale. Developers could be working 

on several branches throughout the day. It’s hard to 

remember how branches are related. Even if developers 

do merge their changes back into the right branch, there 

is a risk they do not have all of the latest changes, causing 

another conflict. Instead of moving onto the next task, 

time needs to be spent reviewing merge conflicts or 

worse yet, backing out their changes.

BRANCHING DOCUMENTATION 

Branching strategies only work if they are communicated 

effectively. They need to be concise. Otherwise, it can be 

too difficult for developers to follow, leading to a need to 

focus on activities other than writing new code and thus 

decreasing overall team velocity.

For some teams, strategies are outlined using an external 

tool. They may be written down on a whiteboard, wiki, 

or confluence page. Or they exist in the head of the 

most senior member of the team. Over the years, this 

documentation is rarely updated, or even worse, it is lost.

When a new team member joins, they need to figure 

out how to not break everything. Relying on a physical 

whiteboard or external tool to track how code should 

flow leads to more errors and confused developers. 

Some may even delay merging to avoid such conflicts. 

But late-stage integrations can cause time-zapping 

regressions that could even delay a release.

COMPLICATED SCRIPTS

What many companies do to force relationships between 

branches is write scripts on top of their version control 

system. Anytime scripts are written on top of a product, 

it locks developers into a very specific pattern. It’s 

difficult to maintain over time and also makes it 

challenging to upgrade.

These scripts would need to handle hundreds to 

thousands of branches for a large enterprise-scale 

project. They can quickly become out of date. Scripts are 

costly to maintain. Companies need to hire people to just 

manage those scripts. If an admin leaves the company 

on short notice, their knowledge goes with them. 

Enterprises end up sacrificing speed in order to support 

their development process. But there is a better way. The 

right version control system can automate your process, 

keeping velocity high and teams productive.



www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks  
are the property of their respective owners. (0120AD21)

WHITE PAPER

4  |  How to Automate Your Branching Strategy

Automate With Perforce Streams
Perforce Streams — the branching mechanism in Helix 

Core version control — solves development challenges. 

It can…

•	 Automate any development process.

•	 Implement flexible workflows.

•	 Maintain control.

•	 Simplify complex environments.

HOW STREAMS WORKS

Regardless of how complex your process is, developers 

can easily get started with Streams without needing to 

understand all the details. All they need is the name of 

the stream to work against. Then they use either Helix 

Visual Client (P4V) or Helix Command-Line Client (P4) 

and get to work.

Streams tracks the relationship between the originating 

stream/branch (the parent) and the new child stream/

branch. It’s easy to visualize the relationship between 

streams in the Stream Graph.

It’s easy to understand the flow of change. Different 

colored arrows on the Stream Graph indicate new 

changes that need to be addressed:

•	 Grey = no merge or copy required.

•	 Green = a merge or copy operation is available.

•	 Orange = stream must be updated, after which 

merge or copy is available.

Streams prevents developers from copying up their 

changes until they have merged down all necessary 

updates. This built-in best practice encourages 

developers to merge early and often. Plus, it separates 

mature code from immature code, keeping your 

codebase stable. Because Streams tracks relationships, 

merges will always go to the correct branch.

Streams also works with Helix Core features such as 

exclusive checkouts. Teams won’t waste hours or days on 

duplicated efforts. When it comes to the build process, 

Streams integrates with any preferred build runner to 

automatically test. With Federated Architecture, Helix 

Core servers can be set up around the globe. This ensure 

that team members get their feedback and files fast, no 

matter where they’re located.

With Streams, your teams 
no longer need a white-
board or heavy scripts. 
Developers can merge 

with confidence and avoid 
time-zapping merges and 

late-stage regressions.
Stream Graph in Helix Visual Client (P4V).

https://www.perforce.com/products/helix-core
https://www.perforce.com/products/helix-core
https://www.perforce.com/products/helix-core-apps/command-line-client


www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks  
are the property of their respective owners. (0120AD21)

WHITE PAPER

5  |  How to Automate Your Branching Strategy

How to Use Perforce Streams
There are several use cases where Streams can help 

automate development. Examples include:

•	 Component-Based Development

•	 Development Pipeline/Maturity Model/Shift Left

•	 Multiple Teams, Parallel Releases, and 

Multiple Variants

Component-Based Development 
Component-Based Development (CBD) breaks up 

products into reusable components. This can include 

shared/common code, microservices, or a producer 

consumer model.

CBD approaches development like an assembly line 

filled with building blocks.  Each block is worked on 

independently. These blocks are put together to create 

a larger block. Then those larger blocks 

are put together to create systems.

COMPONENT-BASED 
DEVELOPMENT CHALLENGES

Each component needs to fit together. If 

a project has ten components, it’s pretty 

simple to track how things are interrelated. 

But as projects scale to hundreds or 

potentially thousands of components, 

it can be almost impossible to track 

dependencies. To avoid time-consuming 

testing across components, developers 

may not merge changes as frequently. But 

late-stage integrations just  

cause more conflicts. 

Teams may also have multiple different sub-components 

and products using different versions of a common 

library. Once a defect is found, propagating fixes to 

larger building blocks (potentially across versions) is 

a monumental task. This sort of dependency chain 

management is a tremendously painful task if done 

manually. Scripting layers can only do so much. They 

need to be updated to account for each new branch, 

release, and defect. 

The point of component-based development is to 

be able to reuse components. But if developers are 

spending more time managing these relationships, teams 

may not see the benefits. Automation allows teams to just 

work on code while decreasing the overall complexity of 

managing dependencies.

SIMPLIFY COMPONENT-BASED 
DEVELOPMENT WITH STREAMS

Using Streams for component-based development 

simplifies and encourages reuse. All components are 

managed independently and graphically. Teams can 

version product configurations just like code.

In this example, product1 combines three different 

components — component A version 1.3 and version 

1.0 of component B and C. The stream path indicates 

what components, and their versions, are included in the 

product release.

Component-based development Stream Graph.



www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks  
are the property of their respective owners. (0120AD21)

WHITE PAPER

6  |  How to Automate Your Branching Strategy

Let’s say there is a defect in component C and a 

new version is released. The import path can be 

automatically updated to reflect the change, no 

external scripts required. Now product version 1.1 

will include the new version.

Because product configurations 

can be versioned, 

teams do not need to 

remember what products 

are dependent on specific 

components. This gives teams 

ultimate traceability. Using 

Streams helps teams reuse 

code more efficiently, eliminate 

regressions, and easily track 

down defects. 

Development Pipe-
line/ Maturity Model/Shift Left
The later a defect is found, the more expensive it is to fix. 

To help remove quality issues in production, teams may 

look to evolve their development pipeline to address 

gaps in testing. Implementing a development pipeline 

maturity model — also referred to as shift-left testing — 

requires code to be integrated earlier in the process.

EARLY TESTING CHALLENGES

To implement a development pipeline, teams need to 

address testing at every stage. In the beginning, most 

developers work in isolation. There is little visibility into 

what everyone is working on and how it will eventually 

come together. Test coverage is therefore limited.

Teams might implement a pre-commit trigger as a best 

practice. Therefore, when changes are committed, a 

build is initiated. Developers might receive feedback in 

as little as a few minutes. If the build is successful, the 

changes are passed along. With each new build, test 

coverage grows. As a change moves through 

the pipeline, it is combined with changes across 

multiple teams.

This model can create gaps in test coverage that can 

reveal bugs in QA or production. It slows teams down. 

Now they need to put new functionality on hold to 

address quality concerns.

If teams are working off a mainline, a developer could 

commit and push code that has only been tested on their 

own machine. Now immature changes are mixed with 

mature code. With most version control systems, it can be 

incredibly difficult to detangle.

Automating your testing environments allows you to save 

the most expensive resource — humans working on code 

— to deal with more high-value tasks. Building a solid 

pipeline should focus on getting people feedback fast. By 

the time a change enters the codebase and is handed off 

to QA, it should be well-tested and work well with other 

changes. This keeps your pipeline moving as fast 

as possible.

Development pipeline without Streams.



www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks  
are the property of their respective owners. (0120AD21)

WHITE PAPER

7  |  How to Automate Your Branching Strategy

SHIFT LEFT WITH STREAMS

Streams supports your development pipeline by giving 

teams visibility. By automating each testing cycle unit – 

static, continuous integration, regression, etc. — Streams 

separates immature changes from your mature codebase.

This ensures your mainline does not get polluted by bad 

check-ins.

In the Stream Graph, developers can see how their code 

moves through the pipeline. They can check out a stream, 

make changes, and test in isolation. When changes have 

passed an isolated build, code can be checked in. Now 

other team members can see the code and work from the 

latest build. Because the code has already been tested, 

it minimizes the risk that a build will break. Now you can 

test specific components, see how code evolves, and 

trace issues.

Streams removes potential bottlenecks in testing, 

increasing coverage with every step the chain. 

Developers get faster feedback. And by the time changes 

get to production, teams can be confident they are 

releasing only the highest-quality code.

Multiple Teams, Parallel Releases, 
and Multiple Variants
As complex projects scale, development can expand 

to include multiple teams, parallel releases, and/

or multiple variants. Organizing and 

orchestrating changes proposes several 

challenges for teams.

•	 Multiple Teams

•	 Parallel Releases

•	 Multiple Variants

MULTIPLE TEAMS

Enterprises with large, complex products 

often break code into multiple component 

or feature teams in an attempt to move faster. 

For example, they may be split up by front 

end and backend. Depending on scope, 

a product may also require a separate API 

team or another working on a database layer. 

Communication within a team can be tough. 

Now it needs to work across teams.

Challenges With Multiple Teams

Although code is interdependent, developers don’t 

know how their changes are connected. Teams may 

defer integration and testing as it is too difficult. Waiting 

until the end to combine everything can cause delays in 

production, massive rework, and quality issues.

Much like “merge early, merge often” is a best practice 

within a team, “integrate early, integrate often” is a 

best practice across teams. Tools and scripts struggle to 

accommodate ever-growing scale. Late integration can 

cause release tail. Without a single unified platform to 

incorporate all the changes, the developer feedback loop 

can quickly lose speed.

Test Streams integrations.



www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks  
are the property of their respective owners. (0120AD21)

WHITE PAPER

8  |  How to Automate Your Branching Strategy

For example, Team A is writing a new feature based on 

a handful of rest API calls. But Team B changed that rest 

API call for something else. Now when the code comes 

together, it’s broken. This integration was delayed due 

to complexity, so Team A has already moved on to the 

next feature. It’s taken weeks to discover everything is 

broken, and now there is a new feature! Teams now need 

to halt their work to identify the root causes of the failure. 

Automating integrations eliminates this issue.

Multiple Teams + Streams

Integration across teams is easier with Streams. It’s 

because Streams guides developers and increases 

visibility into the entire development process.

Multiple teams integration pipeline.

Stream Graph to integrate code across teams.

In our Streams example, there are three feature teams 

and three API teams. The API teams’ code is integrated 

together before coming together with feature teams. The 

acme_int stream’s colors on the Stream Graph indicate 

there some changes in the acme_int stream that need to 

be merged down into the acme_feat1 and acme_feat2 

streams. These streams also have changes that can be 

copied up after the merge.

Developers always know they have the most recent 

changes before merging, encouraging them to integrate 

early and often. Because each step is automated, there 

are no bottlenecks integrating code across teams.

PARALLEL RELEASES

Supporting multiple product releases requires a lot out 

of teams. If a product has four major and eight minor 

releases a year, and supports releases over the previous 

three years, this means teams need to support 36 

releases.

Challenges With Parallel Releases

Patching defects across multiple releases is very difficult. 

Usually, the person in charge needs to determine where 

to patch, and which releases and branches are impacted. 

Often, it’s a manual process that offers 

zero traceability. This can cause a lot of problems for 

products that need to meet regulatory standards.



www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks  
are the property of their respective owners. (0120AD21)

WHITE PAPER

9  |  How to Automate Your Branching Strategy

Most of the time, teams just need to hope a patch is 

merged correctly. Hope is never a good strategy. 

Parallel Releases + Streams

Streams allows you to visualize all your releases. It 

helps teams more easily propagate bug fixes and 

maintain higher-quality code.

At the bottom of the Stream Graph, there is a 

stream for integrations that is tied to main. The main 

stream has acme release 1.0 and 2.0. These release 

steams here are supported by maintenance streams. 

Using the graph, you can see how hot fixes would be 

propagated down into a release. This process happens 

automatically. The system itself knows exactly how these 

branches are related to each other and how the flow of 

change should go. Using Streams helps you maintain 

these releases with higher quality.

MULTIPLE VARIANTS

Companies often need to 

produce slightly different 

versions of a given product. 

Most of the code stays the 

same, but each variant 

differs. Managing these 

slight variations can be 

difficult, especially at scale.

Challenges With 
Multiple Variants

When managing multiple 

variants, fixes or new feature 

code must be propagated 

across products. This could 

potentially involve hundreds 

of variants. Each must be 

maintained and tested every 

time a change is made to 

the codebase. 

Propagating changes across variants has the same 

problems as supporting multiple parallel releases. 

It’s hard to determine where the changes need to go. 

Manual processes are required to perform and verify 

each merge.

Multiple release and maintenance streams in Stream Graph.

New feature being applied to several USB drives.



www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks  
are the property of their respective owners. (0120AD21)

WHITE PAPER

10  |  How to Automate Your Branching Strategy

For example, a new feature may need to be pushed to 

several different hardware options. The base model 

contains 90% of your code. Each variant also has some 

code specific to the hardware.

If the wrong variant is installed in a piece of hardware, it 

can cause massive losses. There could be inconsistencies 

across the variants. Maybe one piece of hardware works 

as expected, but the others have problems. If this piece 

of hardware ends up in an embedded or automotive 

device, the need to trace changes becomes critical. 

It is a tremendous challenge to keep up with. Manual 

processes increase this risk of costly errors.

Multiple Variants + Streams

Using the same hardware example, the common stream 

contains the code that applies to all different variants. But 

then there are child streams for each individual variant. 

If a change is made to the shared parent stream, it is 

going to light up and tell each of the individual variants 

there are available changes.  Then these changes can be 

merged down and tested.

If there is an issue with a variant, for example flash_128, 

then it can be handled in isolation from the other variants. 

The Stream Graph is built based on how you set up and 

define relationships between each variant. Developers 

can understand how code flows, giving you consistency 

across products.

No matter your environment, Streams can help you:

•	 AUTOMATE any development process

•	 Implement FLEXIBLE workflows

•	 Maintain CONTROL

•	 SIMPLIFY complex environments

How to Migrate to Perforce Streams
Ready to migrate? For most, Perforce Streams will be 

easy and straightforward to use. However, Streams is a 

departure from classic branching strategies.

Start by bringing your team together — development 

leads, developers, architects, QA people, and build 

engineers. Discuss what your process would look like if 

there were no restrictions or challenges. 

•	 What could you build?

•	 How could you handle these different processes?

Once you outlined your flow chart, open up the Stream 

Graph and build it. You can build anything. Customize 

to your optimal environment and see how easy it is to get 

everybody to collaborate.

If you want to change it — click, drop, and drag another 

stream. It is that easy to refine your process. No 

scripts. As teams add branches and merge, the graph 

automatically updates. You no longer need to rely on one 

person to manually update a static deliverable outlining 

your development process. Streams is flexible enough to 

adapt to how teams actually work.

MIGRATING YOUR MONOLITH

If you’re looking to breakup your monolith, Streams 

allows you to slowly transition. Helix Core can handle 

your entire SVN or ClearCase monolith “as-is” without 

requiring major refactoring first. Because Helix Core is 

built to scale, it can support all your legacy code, while 

improving your overall performance and quality.

Over time, you can start moving projects into 

components. This allows you to break up your monolith 

structure on your timeline. Because Helix Core integrates 

with a variety of plugins and CI/CD tools, you can get 

immediate benefits as you transition. 

Stream Graph to management multiple variants. 



www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks  
are the property of their respective owners. (0120AD21)

About Perforce

Perforce powers innovation at unrivaled scale. With a portfolio of scalable DevOps solutions, we help modern enterprises overcome 
complex product development challenges by improving productivity, visibility, and security throughout the product lifecycle. Our portfo-
lio includes solutions for Agile planning & ALM, API management, automated mobile & web testing, embeddable analytics, open source 
support, repository management, static code analysis, version control, IP lifecycle management, and more. With over 20,000 customers, 
Perforce is trusted by the world’s leading brands to drive their business-critical technology development. For more information, 
visit www.perforce.com.

WHITE PAPER

11  |  How to Automate Your Branching Strategy

STREAMS BEST PRACTICES

Here are some things to keep in mind as you are setting 

up your project.

1.	 Consider which types of streams to use.

2.	 Review the flow of change, which is suggested by 

the stream type based on best practices.

•	 Most development streams allow bidirectional 

flow of change. Release streams usually do not 

accept changes from the parent (mainline). 

3.	 Choose stream names carefully.

•	 Stream metadata captures the most important 

information about a stream and organizes the 

structure. Formalize a naming convention and 

communicate it to teams.

4.	 Determine the implications of parent-child 

relationships between Streams.

•	 Consider how you perform code and 

configuration merges between streams.

5.	 Capture any relevant information about stream 

composition in the stream view. 

•	 This information can help determine how 

changes are inherited.

Try Helix Core + Streams Free
You can get started for free for up to five users and  

0 workspaces.

START USING STREAMS

What you need to set up streams.

WANT HELP?

We’re here to support your teams.

TRY TODAY

perforce.com/products/helix-core/free-version-control

GET STARTED

perforce.com/products/helix-core/set-up-streams

CONTACT US

perforce.com/contact-us

https://www.perforce.com/manuals/p4guide/Content/P4Guide/streams.types.html
https://www.perforce.com/manuals/p4guide/Content/P4Guide/streams.paths.html
https://www.perforce.com/products/helix-core/free-version-control
https://www.perforce.com/products/helix-core/set-up-streams
https://www.perforce.com/contact-us

